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Lattice Boltzmann method on unstructured grids: Further developments
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We discuss further developments of the finite-volume lattice Boltzmann formulation on unstructured grids.
It is shown that the method tolerates significant grid distortions without showing any appreciable numerical
viscosity effects at second order in the mesh size. A theoretical argument of plausibility for such a property is
presented. In addition, a set of boundary conditions which permit to handle flows with open boundaries is also
introduced and numerically demonstrated for the case of channel flows and driven cavity flows.
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INTRODUCTION

Recent advances in lattice Boltzmann research have
to substantial enhancements of the capabilities of the la
Boltzmann ~LB! method to handle complex geometrie
While the original LB method was initially constrained
uniform space-time lattices@1#, a severe limitation for prac
tical engineering purposes, nowadays several extens
have been developed which permit to do away with suc
weakness. These include interpolation-supplemented fin
difference schemes@2,3#, various types of finite-volume for
mulations@4,5#, LB schemes with local grid refinement@6#,
as well as microscopic kinetic models in disordered latti
@7#. A particularly interesting option was recently propos
by Peng and co-workers@8–10#, who imported powerful fea-
tures of modern finite-volume techniques within the L
framework. This leads to a very significant upgrade of
finite-volume LB family, namely, the possibility of dealin
with unstructured meshes, that is, nonuniform grids in wh
connectivity ~the number of links emanating from eac
single node of the lattice! can change from node to nod
These unstructured lattice Boltzmann schemes~ULBE for
short! integrate the differential form of LBE using acell-
vertexfinite-volume technique in which the unknown pop
lations are placed at the nodes of the mesh and evolve b
on the fluxes crossing the edges of the corresponding
ments. Due to specific properties of the cell-vertex meth
ology, the resulting finite-volume LB schemes can operate
unstructured meshes, thereby providing a significant boos
geometrical flexibility which aligns LB with the most ad
vanced computational fluid dynamics solvers. In this pap
we present further developments of the ULBE technique
particular, we shall show that ULBE tolerates significa
stretching without introducing any appreciable numeri
viscosity effect to second order in the mesh size. This is v
important for practical applications, since it permits a tim
accurate description of transitional flows. A tentative theor
ical explanation for this favorable behavior is also presen
Second, we introduce a set of boundary conditions wh
permit one to apply the ULBE technique to the case of flo
with open boundaries. Finally, further directions of futu
research are also briefly surveyed.
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I. UNSTRUCTURED FINITE-VOLUME
FORMULATION OF LBE

Similar to all its predecessors, the unstructured fini
volume formulation first put forward by Penget al. @8# be-
gins with the single-time relaxation lattice Boltzmann equ
tion in differential form:

] t f i1cW i•]W xf i52~ f i2 f i
e!/t. ~1!

Here f i(xW ,t)[ f (xW ,vW 5cW i ,t), i 51,b, is the probability of
finding a particle at lattice sitexW at time t, moving along the
lattice direction defined by the discrete speedcW i . The left-
hand side of this equation represents the molecular f
streaming, whereas the right-hand side represents molec
collisions via a single-time relaxation towards local equili
rium f i

e on a typical time scalet @11#. This local equilibrium
is a ~local! Maxwellian expanded to second order in the flu
speed:

f i
e5rwi@11bcW i•uW 1 1

2 ~b2cW icW i2I !:uW uW #, ~2!

whereb51/cs
2 , cs being the lattice sound speed, 1/A3 in the

present work, andI denotes the unit tensor. In the above,r

5( i f i is the fluid density anduW 5( icW i f i /r is the fluid speed.
The relaxation timet controls the fluid kinematic viscosity
n.t, the specific form of this relation depending on th
details of the finite-volume scheme. In order to recover fai
ful fluid dynamics, the set of discrete speeds must be cho
such that mass, momentum, and energy conservation are
filled @17#. In the present work, we shall refer to the tw
dimensional nine-speed model defined by the following d
crete speeds@11#:

cW i5H 0, i 50

cos@~ i 21!p/2#, i 51,4

A2 cos@p/41~ i 25!p/2#, i 55,8

with weightsw054/9, w1,451/9, w5,851/36.
Following Penget al. @8#, we discretize the LBE in dif-

ferential form~1! by introducing a tessellation based on t
angular elements. To each nodeP of the discrete grid, we
©2003 The American Physical Society01-1
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associate a set ofb59 discrete populationsf i(P,t),i 51,b
which represent the unknowns of the problem. The set oK
trianglesTk(P), k51,K, which shareP as a common vertex
defines the finite elementT(P) associated with nodeP ~see
Fig. 1!. Each of theseK triangles is defined by the thre
verticesTk(P)[@P,Pk ,Pk11#, K being the connectivity of
the unstructured mesh. To each triangleTk is associated a
finite volumeVk(P), defined by the union of the two sub
triangles Vk

25@P,Ek ,Ck# and Vk
15@P,Ck ,Ek11#, where

Ck is the center of the triangleTk and Ek , Ek11 are the
midpoints of the edgesPPk , PPk11, respectively.

Application of the Gauss theorem to each finite volum
Vk

7 , as combined with a first-order time marching, yiel
the following finite-difference equation:

f i~P,t1dt!5 f i~P,t !1dt(
k51

K

~F ik2J ik!, ~3!

where the sumk runs over the surfaceS(P) obtained by
joining the centers Ck with edges Ek : S(P)
5@E1C1E2 . . . EKCKEK11#. In the above,VP is the volume
~area in 2D! of the control volumeVP5økVk , and the
cyclic conditionEK115E1 ensures that the control volum
VP closes up. Finally,F ik , J ik denote the streaming an
collisional fluxes of thei th population coming from thekth
volumeVk .

Note that fluxes over the internal edgesPEk , PCk are not
included because they cancel out identically~in-going flux
from a neighbor volume is equal outgoing flux to that sa
volume!. Evaluation of the fluxes in Eq.~3! requires the
knowledge of the populationsf i at the edge and center loca
tions. These values are obtained by interpolation within
given edge and triangles, respectively. More specifically,

f i~Ek!5
f i~P!1 f i~Pk!

2
, ~4!

f i~Ck!5
f i~P!1 f i~Pk!1 f i~Pk11!

3
. ~5!

Once these interpolation rules are defined, the calculatio
the streaming fluxes is straightforward. The contribution
collisions arises from the integration of the collision ter
( f i2 f i

e)/t over each volumeVk :

FIG. 1. Geometrical layout of the cell-vertex finite-volume d
cretization.
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J ik5VP
21E

Vk

~ f i8/t!dV5VP
21E

Vk
2

~ f i8/t!dV

1VP
21E

Vk
1

~ f i8/t!dV, ~6!

whereV7 are the volumes ofVk
7 and f i8[ f i2 f i

eq . The re-
sulting collisional flux is computed by calculating the loc
nonequilibrium distributionf i8 over Vk

7 via a linear interpo-
lation:

J ik5
Vk

2/VP

3
@ f i8~P!1 f i8~Ek!1 f i8~Ck!#

1
Vk

1/VP

3
@ f i8~P!1 f i8~Ck!1 f i8~Ek11!#. ~7!

The resulting finite-volume equation takes the following ge
eral form:

f i~P,t1dt!5 f i~P,t !1dt(
k50

K

Sik f i~Pk ,t !

2
dt

t (
k50

K

Cik@ f i~Pk ,t !2 f i
e~Pk ,t !#, ~8!

where indexk50 denotes the pivotal pointP. The detailed
expressions of the streaming and collision matricesSik and
Cik5Ckd ik are obtained by direct application of the interp
lation rules~4! and ~7!. The result is

Si050, Sik5cW i•NW k /VP , k51,K ~9!

and

C051/3, Ck5
Vk211Vk

3VP
, k51,K. ~10!

In the above, we have defined

NW k5@ 5
12 ~AW k21

1 1AW k
2!1 2

12 ~AW k21
2 1AW k

1!#, k51,K,

whereAW k
7 are the vectors normal to the surfaces~lines in 2D!

EkCk , CkEk11, with magnitude equal to the size~length in

FIG. 2. Geometrical representation of the mirror method.
1-2
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LATTICE BOLTZMANN METHOD ON UNSTRUCTURED . . . PHYSICAL REVIEW E68, 016701 ~2003!
2D! of these surfaces. Similarly,AW k21
7 associate with sur-

facesEk21Ck21 andCk21Ek , respectively.
It is readily checked that the following sum rules hold:

(
k50

K

Sik50, (
k50

K

Cik51 ; i .

These sum rules play an important role in the theoret
analysis of the scheme, as detailed in the sequel.

II. BOUNDARY CONDITIONS

The above procedure applies to both internal and bou
ary nodes. However, in the case of boundary nodes, the
responding control volumes do not close up, leaving t
external edges exposed on the boundary~see Fig. 3!. Several
strategies can be chosen to deal with these boundary
fluxes, but three methods have been used so far:~i! equilib-
rium method,~ii ! mirror method,~iii ! covolume method.

The equilibrium method consists in setting the edge v
ues of the populations to the corresponding equilibrium v
ues, based on the specified values of the density and velo
field at the boundary. This method is very simple, but
limited use, since it cannot handle situations with signific
gradients at the boundary~a commonplace in most applica
tions!.

The mirror method consists in introducing ghost nodes
the boundary, which are defined as the mirror images of
corresponding internal nodes, pivoted around the bound
node B ~see Fig. 2!. Prior to evaluation of the streamin
fluxes, the mirror populations are fixed by a simple seco
order interpolation:

f ~Mk!52 f ~B!2 f ~Pk!.

Once this is done, the boundary nodeB can be updated as i
it were an ordinary internal node. This procedure is ve
transparent and can deal with boundary gradients. Howe
it may lead to topological ambiguities for generic boun
aries, because the volume element associated with a bo
ary node does not close up if the boundary is curved.

Finally, in the covolume method, the edge fluxes a
evaluated explicitly by using interpolation at the bounda
edges~see Fig. 3!:

f ~Ek!5
f ~B!1 f ~Bk!

2
.

FIG. 3. Geometrical layout for boundary elements. The flux
C1 , C2 across the boundary edgesBB1 and BB2 need to be ex-
plicitly computed.
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This is slightly more complicated to program than the pre
ous two, because it requires to account explicitly for ed
fluxes which are not seen by internal nodes. However,
covolume method supports boundary gradients and it wo
for the generic boundary geometries.

The above prescriptions cover an important class
boundary conditions, but are not clear as how to handle o
boundaries—a case of great importance for practical ap
cations.

Indeed, our experiments indicate that none of the th
boundary procedures described above is able of hand
open flows in a satisfactory way~to the best of our knowl-
edge, no open-flow application of the ULBE method h
been presented to date!. To cope with this problem, we hav
developed the following procedure.

A. Inlet-outlet boundary conditions

At both inlet and outlet sections, the computational d
main is augmented with one~or more! buffers of regular,
straight triangles. The scope of these regular layers is to
sure that the last-but-one row of nodes faces a correspon
neighbor along thex direction, so that, by imposing the sam
velocity field on these two rows of nodes, a zer
longitudinal-gradient boundary condition automatically r
sults. This very simple recipe is found to yield accepta
results where none of the three boundary conditions
scribed above would work, as it will be documented shor

Before doing so, a few theoretical considerations are
order.

B. Theoretical considerations

To date, the ULBE scheme has been successfully dem
strated for a number of simple test benchmarks, such as C
ette flow, driven cavity flow, and others@8–10,12#. Among
others, these tests indicated that ULBE exhibits a fairly l
amount of numerical diffusion, a somehow intriguing pro
erty for an unstructured finite-volume method. However,
theoretical analysis of this property has been presente
date. Here we outline the basic points of this analysis, le
ing full details to a separate publication.

The distinctive mark ofall finite-volume formulations of
LBE is a clear-cut separation between the set of disc
speedscW i ,i 51,b and the spatial grid, most specifically th
set of nearest-neighbor connectors:

dW k[Pk2P, k50,K.

In the limit where these two sets coincide,

cW idt5dW i , b5K ~11!

we would expect ULBE to reproduce the standard LBE
property calledconsistencyin early finite-volume formula-

s

1-3
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UBERTINI, BELLA, AND SUCCI PHYSICAL REVIEW E68, 016701 ~2003!
tions@4,13#. Consistency is a comfortable property becaus
ensures that the finite-volume LBE inherits all the famil
~and nice! properties of standard LBE in the limit of a un
form lattice. In particular, the fact that numerical diffusio
amounts to a constant value21/2 everywhere, permits to
reabsorb it exactly within the definition of the effective la
tice fluid viscosityn5cs

2(t21/2).
It is readily shown that this property doesnot hold for the

present ULBE.
To see this, it is sufficient to inspect the specific form

the streaming coefficientsSik , Eq. ~9!. The quantity
Sikdt/VP represents the fractional volume swept by thei th
population along the perpendicular to the surfaceSk in a
time lapsedt. Consequently, it is the analog of the Coura
Friedrichs-Lewy number controlling the numerical stabil
of the scheme (Sikdt/V,1).

In order to recover the standard LBE in the limitcW idt

5dW k , we requireSi0dt521, Si ,kdt5d ik . It is readily seen
that this is not the case. Lack of consistency with stand
LBE is not necessarily a flaw of ULBE: it simply warns u
that some of the familiar properties of the standard LBE
not inherited by ULBE.

A complete theoretical analysis of the numerical prop
ties of ULBE requires a full-fledged Chapman-Enskog p
cedure, which is left for a future publication. Much insig
can, however, be gained by a simpler approach based on
inspection of the dispersion relation associated with
ULBE scheme. For the purpose of highlighting the role
grid discreteness on the linear properties of the UL
scheme, it is sufficient to concentrate on the collision-f
version of the differential LBE~1!. By representing the den
sity distribution functionf i(xW ,t) in Fourier series asf i(xW ,t)
;ei (pW •xW2vt), wherev is the ~complex! frequency andpW the
wave vector, and Fourier transforming the collision-fr
ULBE, we obtain

e2 ivdt511dt(
k50

K

Sike2 ipW •dW k. ~12!

In the continuum, these two quantities are related by
free-wave dispersion relation,

vR5pW •cW , v I50,

where subscriptsR,I denote the real and imaginary part
respectively. As is well known, the second-order terms of
form C2p2 in the expression ofv I associate with numerica
diffusion, whereas the third-order terms invR correspond to
numericaldispersion.

A remarkable property of the standard LBE scheme is t
the continuum dispersion relation isexactly reproduced on
the discrete light conesdxW i5cW idt, simply because the par
ticles propagate along the directions of the discrete g
01670
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More precisely, the viscosity of the plain LBE scheme co
sists of two separate contributions:

n5cs
2~t1tP!. ~13!

In the above,t is the physical contribution due to collisiona
relaxation, whereastP is a purely numerical contribution du
to the second-order expansion of the streaming operator.
standard LBE,tP521/2, corresponding to a negative diffu
sion. The remarkable point is that this numerical diffusi
can be incorporated within the effective viscosity of the LB
fluid according to expression~13!. On the other hand, sinc
dxW i5cW idt, the scheme is also dispersion-free at all orde
Such useful properties are generally lost in a finite-volu
formulation with arbitrary geometry, where a certain degr
of numerical diffusion and dispersion must be anticipated

To appreciate this point quantitatively, one has to so
the dispersion relation~12!. A few general remarks can b
made without actually solving this equation in detail. B
summing the squares of the real and imaginary parts of
~12!, and taking the ratio of the imaginary to the real part,
obtain the following relations:

e2v Idt5112Cidt1~Si
21Ci

2!dt2, ~14!

tg~vRdt!5
Sidt

11Cidt
, ~15!

where we have set

Ci[(
k

Sikcosfk , Si[(
k

Siksinfk , fk[pW •dW k .

In order to appreciate the effects of space-time discreten
at various orders, the above relation is best expanded in
Taylor series of bothdt andfk .

At zeroth order indt, we obtainv I50, and no informa-
tion on vR .

At the first order~the one relevant to linear advection!, we
obtain

v I5Ci , vR5Si .

By expandingCi and Si to first order in space, the forme
gives againv I50 ~owing to the sum rule(k50

K Sik50),
whereas the latter yields

vR5(
k

SikdW k•pW ,

which identifies the propagation speed of collective mot
as

VW i5(
k

SikdW k .

Based on the expression ofSik , Eqs.~9!, it is seen that this
reduces to the standard LBE valuecW i , only if the tensor
1-4
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LATTICE BOLTZMANN METHOD ON UNSTRUCTURED . . . PHYSICAL REVIEW E68, 016701 ~2003!
(kdW kNW k becomes~proportional to! the identity. In general,
this is not the case, the propagation speed depends on
local position and contains higher-order contributions in
wave vectorpW ~numerical dispersion effects!.

Proceeding to next order in space, we get a new contr
tion to the imaginary part, corresponding to~numerical! dif-
fusion,

v I5(
k

1

2
SikdW kdW k :pW pW .

This identifies a~purely numerical! diffusion tensor as

DWW i[
1

2 (
k

SikdW kdW k ,

which is the analog of thecW icW i /2 term in the standard LBE.
On a general grid, this diffusion tensor cannot be stric

homogeneous, nor can it be isotropic. Interestingly enou
however, it can be close to zero. Consider in fact the dis
guished limit in which each subvolumeVk has a mirror part-
ner Vk* such thatNW k1NW k* 50. If this mirror symmetry
holds, the above sum ink annihilates the diffusion tensor b
mere symmetry. It is interesting to point out that the ULB
scheme does indeed have mirror symmetry in the limit o
regular, uniform mesh withb5K. As a result, if mirror sym-
metry is only mildly broken, then numerical diffusion can b
correspondingly small. In addition, further cancellations
expected on a scale larger than the typical size of the
ments, due to spatial averaging over an ensemble of ‘‘r
dom’’ elements.

This provides a theoretical clue on the reasons why
merical simulations with ULBE show a very low degree
numerical diffusivity. One may wonder whether the collisio
operator is going to change this picture. A similar analysis
the collision matrixCik shows that this is not the case. Ow
ing to the sum rule(kCk51, discretization effects on th
collision operator do alter the bare valuev I51/t, but only at
second order inp ~hyperviscous effects!.

III. NUMERICAL RESULTS

In the present section we provide a numerical demons
tion of the ideas discussed above.

TABLE I. Percentage error versus grid distortion betwe
present numerical results and the analytic solution.

d e

0.00 0.017
0.15 1.26
0.3 1.53
0.4 4.34
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A. Numerical viscosimeter

As a preliminary step, we show that numerical viscos
effects are very small, within second-order accuracy
space. In order to measure the numerical viscosity, we c
sider a two-dimensional Taylor-vortex configuration in a b
of size W and let it freely decay in time. The numerica
results are confronted with the analytical solution:

u52umaxcos~p1x!sin~p2y!e2n(p1
2
1p2

2)t,

v5vmaxsin~p1x!cos~p2y!e2n(p1
2
1p2

2)t.

In Fig. 4 we show the profileu/umax versusy/W, as ob-
tained by ULBE with p150, p252p/W, and compared
with the analytical solution. The grid contains 2145 nod
and therefore second-order effects of numerical viscosity
expected to be of the order of 1/2145–531024. To explore
this regime, we have changed the relaxation parametet
through the following sequence:t50.01, 0.0025, 0.001, and
dt520t. On the scale of the picture, all the results appea
be within a few percent of the analytic solution, as compu
with a theoretical viscosity:

n5cs
2t. ~16!

Residual viscosity does not appear to contaminate this r
tion even witht as low as 0.001, which is a clear indicatio
of second-order accuracy~a numerical viscosity nn
;1/2000 would yield a 30% error!. This confirms previous

TABLE II. Percentage error versus number of elements o
regular grid between the numerical results and the analytic solut

Elements e

1024 0.071
4096 0.017
6400 0.011

FIG. 4. Streamwise velocity profile for the Taylor-vortex sim
lation.
1-5



n

ri
o
om
r

in

t

e
el

di
ia
ea
a

i
ea

o-
ric
m

ts,

in
e-
vol-
od
ri-

d-

ic

lle

UBERTINI, BELLA, AND SUCCI PHYSICAL REVIEW E68, 016701 ~2003!
claims @9# and extends them to a second-order regime~pre-
vious work usedt.0.01, too high to be conclusive o
second-order effects!.

To gain a better understanding of this matter, a new se
of simulations of the vortex Taylor with increasing degree
distortion has been performed and the relative error as c
pared to the exact solution is provided for each distorted g

~see Table I!: Starting from a structured layout of nodesxWn ,
n51,N, a distorted configuration is generated by chang

the node locations by random displacementsrWn , xWn85xWn

1rWn . Distorted configurations are classified according
their ‘‘distance’’ from the structured one, defined asd
5maxm$ulm8 /lm21u%, wherel m andl m8 denote the lengths of th
links of the regular and distorted configurations, respectiv
The error relative to the exact solution, defined ase
5(nu(un2un

exact)/umaxu, as a function ofd is reported in
Table I.

This table shows that the numerical error~not entirely due
to diffusion but also due to higher-order effects, such as
persion! remains within a few percent up to fairly substant
degree of grid distorsions. In addition, we have also m
sured the error scaling with the number of elements,
shown in Table II.

These data confirm that the error decreases linearly w
the number of elements, hence quadratically with the lin
size of the mesh cell.

FIG. 5. Grid for the forced Poiseuille flow with periodic boun
ary conditions.

FIG. 6. Parabolic profile for forced Poiseuille flow with period
boundary conditions.
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B. Driven channel flow

As a first test case for open flows, we consider a tw
dimensional channel flow driven by a constant volumet
force. Boundary conditions are no-slip at top and botto
walls and periodic at inlet~or outlet!. The flow is forced to a
maximum speedUM50.4, while the other parameters aret
50.1, dt50.01–0.03. The grid contains 2360 elemen
covering a domain of lengthL596 and widthW532 ~see
Fig. 5! corresponding to a Reynolds number Re51000.

The steady-state longitudinal velocity profile is shown
Fig. 6, from which quite good agreement with analytical r
sults is apparent. For this test case, both mirror and co
ume boundary conditions were found to yield results in go
agreement with the analytical solution. However, flow pe

FIG. 7. Computational grid for the impulsively started Poiseui
flow with open outlet.
1-6
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LATTICE BOLTZMANN METHOD ON UNSTRUCTURED . . . PHYSICAL REVIEW E68, 016701 ~2003!
odicity at inlet and outlet rules out a number of practic
applications, and more realistic boundary conditions nee
be addressed, as detailed in the following.

C. Impulsively started channel flow

Next we focus the important case of flows with open o
lets. The flow is initially at rest~zero speed! and is impul-
sively started by forcing a parabolic profile with maximu
speedUM at the inlet section. At the upper and lower wal
no-slip boundary conditions~zero-speed! boundary condi-
tions are imposed with the standard covolume method. At
outlet, the condition of zero-longitudinal gradients is im
posed via the covolume method with regular outlet buffe
as discussed in Sec. II A~see Fig. 7!. The numerical param
eters areW532, L596, UM50.08, t50.02520.1, corre-

FIG. 8. Parabolic profile for the impulsively started Poiseui
flow with open outlet.

FIG. 9. Sketch of the geometry for the driven-cavity flow sim
lation.
01670
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sponding to the Reynolds number Re5UMH/n572. The
computational domain is covered with 2360 elements a
1241 nodes. The simulation runs over 300 000 time step
length dt50.05, spanning a time lapse of 9000 time uni
corresponding to almost nine recirculation times. The ste
parabolic profile is shown in Fig. 8, from which a very nic
agreement with the analytical solution is observed.

The use of regular buffers at the inlet and outlet w
found to be instrumental to achieve these results. It sho
also be mentioned that a few adjustments of the grid w
required before the correct result could be obtained. Th
adjustments amount to choosing the right thickness and n
ber of elements in the inlet and outlet buffer regions. Furt
work is surely needed to make the open-boundary conditi
more robust and grid insensitive.

D. Cavity flow

Finally, we present a test in which the nonlinear comp
nent of the Navier-Stokes plays a major role. This is t
standard lid-driven cavity flow~see Fig. 9!. Boundary con-

FIG. 10. Centerline longitudinal velocity profile for the cavit
flow at Reynolds number 100.

FIG. 11. Centerline transversal velocity profile for the cav
flow at Reynolds number 100.
1-7
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UBERTINI, BELLA, AND SUCCI PHYSICAL REVIEW E68, 016701 ~2003!
ditions are as follows: at fixed walls we use the covolu
method with zero speed in the local equilibria. Moving wa
are handled the same way, but with a prescribed nonz
speedUW in the local equilibria. As usual, an ambiguit
arises at the corner points, which belong to both fixed a
sliding walls. In the standard LBE, either choice is applica
and would yield reasonable results because three out of
diagonal speeds do not propagate inside the computati
domain. Of course, accuracy depends a great deal on
details of the corner boundary condition and affects
maximum value of the Reynolds number which can be r
ably simulated. In finite-volume implementations the situ
tion is more delicate, because all populations contribute
the incoming fluxes from the boundaries@10#. Recipes to
deal with corners are given and numerically demonstrate
Re5100, 400, 1000 in Ref.@12#. The results show a deterio
ration with the Reynolds number, as witnessed by the sm
scale wiggles well apparent in the velocity profiles at
51000. More robust strategies to deal with corners
clearly needed.

FIG. 12. Centerline longitudinal velocity profile for the cavi
flow at Reynolds number 1000.

FIG. 13. Centerline transversal velocity profiles for the cav
flow at Reynolds number 1000.
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We have repeated the same simulations at
5100, 400, 1000, with the numerical parameterst50.1,
dt50.01, and 3598 nodes, and using the covolume bound
condition. We found that the best results are obtained
excluding the corners, namely, removing a single triangle
each of the four corners.

Although this provisional solution might result in loca
distortions of the secondary vortices at Re.1000, it shows
nonetheless encouraging results. In particular, owing to
flexibility of the unstructured grid, one can arguably min
mize the aforementioned distortions by reducing the size
the corner element to be removed.

The transverse profiles of the longitudinal and transve
velocitiesu(y), v(y) at the centerlinex5L/2, are shown in
Figs. 10 and 11 for the case Re5100. From these figures
nice agreement with previous literature data, including fini
differences@14# and boundary-element methods@15#, is ob-
served. A similar statement applies to the case Re5400, not
shown here. Finally, the longitudinal and transversal veloc
profiles for the case Re51000 are shown in Figs. 12 and 1
These pictures show no sign of numerical wiggles, witne
ing an interesting improvement over previous literature da
We also display the steady flow field configuration~Fig. 14!,

TABLE III. Cartesian coordinates of the three main vortices
Re51000. ULBE, present method; Ref.@14#, finite-difference
method; Ref.@15#, boundary element method; Ref.@16#, standard
LBE.

Vortex position ULBE Refs.@14–16#

Primaryx/L,y/L 0.565,0.386 0.555–0.5557,0.389–0.39
Left x/L,y/L 0.051,0.959 0.051–0.953
Right x/L,y/L 0.893,0.883 0.891–0.875

FIG. 14. Flow streamlines for the cavity flow at Reynolds nu
ber 1000.
1-8
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from which the existence of a primary and two second
vortices is clearly observed. Quantitative data regarding
position of these vortices are provided in Table III. Go
agreement with previous methods, including finit
differences@14#, boundary elements@15#, and standard BGK
@16# is observed.

FIG. 15. Unstructured grid for the cavity-flow calculation. Th
inset shows a close-on of the grid, which reveals a significant
tortion of the geometrical elements.
n

01670
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e

-

Before concluding, we wish to emphasize that the pres
results have been obtained by using unstructured grids w
substantial degree of local distortion, as evidenced by
inset of Fig. 15.

SUMMARY AND FUTURE DIRECTIONS

This work presents a series of results. First, it provid
further numerical evidence that the unstructured fini
volume LBE proposed by Penget al. introduces fairly small
numerical viscosity, actually compatible with second-ord
accuracy. A semiquantitative theoretical explanation for t
nice behavior is also proposed. Second, we have shown
the above conclusion seems to hold also in the presence
substantial stretching of the grid. Third, a boundary con
tion, which extends the viability of ULBE to an importan
class of open flows, has been presented and numeric
demonstrated. Finally, we have shown that cavity flow sim
lations can be taken to relatively high-Reynolds numb
with no sign of numerical instabilities, by simply roundin
off the corners of the computational domain.

Despite these encouraging results, much remains to
done to put ULBE on a firm basis for complex physics a
engineering applications.

First, more systematic and robust procedures to deal w
a wider class of boundary conditions need to be develop
These include flows with open boundaries, as well as corn
between rigid and sliding walls. A full-fledged theoretic
analysis of the numerical properties of ULBE makes also
important subject for future research. Furthermore, the co
putational efficiency of ULBE versus standard LBE as w
as state-of-the-art finite-volume techniques needs to be
sessed. It is clear that ULBE is computationally more exp
sive than the traditional LBE~on a single-node basis! be-
cause both streaming and collision operators are nonlo
On the other hand, it is clear that ULBE is not meant to b
replacement of the standard LBE, but represents an a
tional option which is increasingly valuable with rising ge
metrical complexity. However, the elegance of the meth
combined with its outstanding geometrical flexibility, hold
promise to significantly advance lattice Boltzmann resea
in the years to come.
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